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When applied to large systems, the integrated-levels strategy has been demonstrated to be a good approximation
for the calculation of energy differences with an accuracy comparable to the accuracy that would be obtained
by a single-level calculation at the higher level with only a part of its computational expense. In the present
paper we introduce a modification to the original integrated method, namely, an additive harmonic term that
allows a very simple and general extension of the integrated methods to the calculation of forces (gradients),
optimization of geometries, and calculation of harmonic vibrational frequencies. The new method, called
integrated molecular orbital method with harmonic cap (IMOHC), has been successfully tested by calculating
the C-H bond distances, vibrational frequencies, and bond energies in the ethane molecule. The method
should serve as an efficient method for creating dual-level methods of the QM:MM and IMOMO variety,
and the forces can be used to drive classical (Car-Parrinello) or semiclassical (variational transition-state
theory with semiclassical tunneling) direct dynamics calculations.

Introduction

In the quest for practical yet accurate quantum mechanical
(QM) methods of electronic structure calculations for larger and
larger systems, dual-level and multiple-level methods are arising
as the logical consequence of a large number of independent
lines of development. Recent examples include double-slash
geometry optimization,1 SEC,2 SAC,3 G2,4 VTST-IC,5 QM:
MM,6 “integrated” methods (IMOMM,7 IMOMO,8 CCSS,9 and
ONIOM10), IRCMax,11 dual-level Shepard interpolation,12 and
the combination of ab initio gas-phase energies with semi-
empirical solvation energies.13 The QM:MM6 and integrated
methods7-10 share a common goal and a common challenge.
The goal is to use a higher-level method for a subsystem of a
large system, while treating the rest of the system at a lower
level. The challenge is devising a method to “link” the large
system to the small system. Although there has been consider-
able experimentation and debate, no method has emerged as
totally satisfactory, especially when geometry optimization is
involved.

In the present Letter we present a new approach to geometry
optimization in integrated calculations, which we believe can
have widespread utility for QM:MM6,7 and dual-level-QM8-10

methods. We call the method integrated molecular orbital
method with harmonic cap (IMOHC) because the essential
element is a harmonic cap on the subsystem. Following
Morokuma and co-workers,8,10 the acronym MO stands for both
correlated and uncorrelated QM methods, which are both based
on molecular orbitals. The IMOHC method will be illustrated
for both geometry optimization and the calculation of vibrational
frequencies.

Theory

In an integrated calculation, the energy of a large system is
approximated by

where I denotes integrated, HL indicates the higher level of

EES(I) ) ECSS(HL) - ECSS(LL) + EES(LL) (1)
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calculation, LL is the lower level, ES is the entire (large) system,
and CSS is the capped subsystem. As an example, we can
consider the ethane molecule, CH3CH3, as the entire system
and the methane molecule, CH4, as the capped system obtained
by substituting an H atom for a CH3 group. The energy will
be given by the previously defined combination of HL and LL
energies calculated for a given fixed geometrical conformation
of the CH4 molecule and an LL energy for a given fixed
geometry for the ethane molecule.7-10

The optimization of the geometry is more complicated, since
one substituent of the primary carbon atom is a hydrogen atom
in the capped system but a carbon atom in the entire system.
Call this substituent X. The partial derivative of the energy
with respect to a Cartesian coordinatex is given by

The gradient whose components are given by eq 2 will not be
zero at any physical geometry of the system, since the distance
C-X will tend to the bond length of a C-C bond in one system
and to the bond length of a C-H bond in the other system.
Therefore, we do not require the C-X distance to be the same
in the ES and CSS. Instead we increase the number of
independent variables (and hence the length of the gradient
vector) from 24 to 27. Geometry optimization is now carried
out in a space of 27 Cartesian coordinates, 24 corresponding to
the 3-Cartesian coordinates of the 8 atoms in ethane, and 3
describing the position of the extra H that completes the
methane. The last term in eqs 1 and 2 is independent of the
latter 3 coordinates, and the 2 first terms in eqs 1 and 2 are
independent of the 12 coordinates of the secondary CH3 group,
but the left-hand side of eq 2 is a legitimate analytical function
of all 27 variables, which are taken as independent variables
with no constraints between them. The total elimination of
relationships between the large and small systems is a key
attractive feature of the new method, and it greatly simplifies
the so-called “link atom” problem. If we were to apply the
method in this starkly simple form, though, it would fail for
reasons described next.
The individual terms of the integrated method may be grouped

in two intuitive ways:

or

Equation 3 considers the integrated calculation as a lower-
level inclusion of global substituent effects on a higher-level
calculation for a subsystem. Equation 4 considers the integrated
calculation as the inclusion of higher-level local effects on a
lower-level calculation for the entire system. It is the latter
viewpoint that provides the key to the new method. In eq 4
the first term is totally independent of the location of the
coordinates of the capping H atom. However, since the second
term involves a difference of energies, a minimization according
to the scheme described in the previous paragraph will locate
the capping H at the geometry that minimizes the energy
difference of the two levels rather than at a physical bonding
geometry. For example, if both levels are realistic quantum
mechanical electronic structure levels, the geometry that mini-
mizes the difference will probably involve dissociating the
capping atom. But this is very unsatisfactory; the whole idea

of the capping atom is that it should mimic the bonding
properties of the larger substituent it displaces. (The C-H bond
in the primary CH3 group should involve sp3 carbon, not sp2

carbon.) The problem having been diagnosed, a viable strategy
becomes clear. We write

and

where we have included a harmonic term to maintain this atom
at a physical value of the bond distance in the capped subsystem.
The calculation of the constantk and the equilibrium distance

Req is carried out in such a way that does not involve an
excessive computational cost. This is accomplished by three
single-point energy calculations at the high level. The first one
is a single-point calculation based on the geometry of the
equilibrium conformation of methane as predicted by the LL.
The other two calculations are based on geometries obtained
by slightly elongating and contracting the capping C-H distance
in the capped subsystem. The three single-point energies are
fitted to a parabola as a function of this C-H distance, providing
us with an approximate HL force constant (k) and equilibrium
distance (Req) for this bond.
In the general case one would also add a harmonic term for

bending and torsional motion; such terms were not needed for
the present example.

Example

To test the ability of this method to predict the geometry,
frequencies, and relative energies with a quality comparable to
that which we would obtain with a complete HL calculation,
we optimized the geometry and calculated the frequencies and
the energies for two systems, ethane and ethyl radical. We also
calculated the dissociation energy for breaking a C-H bond in
ethane

To test the sensitivity of the results to the value ofk, we
calculated it in two ways. In the first way we used the reactant
CSS, H3C-H, and in the second we used the product CSS,
H2C-H. These values ofk are denotedk1 andk2, respectively.
Each value ofk has its corresponding value ofReq. The
calculation of thek andReq parameters was made by distorting
the optimized LL predicted geometry by 0.001 Å in each
direction (one C-H bond only as explained above) and fitting
to a parabola.14

To provide a challenging test case, the levels of calculation
were chosen so that the C-H bond distances are very different
at the two levels; thus, we will be able to check if our scheme
provides us with a geometry noticeably closer to the HL
geometry than would be provided by an LL geometry optimiza-
tion. Thus, the HF/3-21G level1 was chosen as LL, while the
MP2/6-31G level1 was selected as HL.
In Table 1 we compare the predicted C-H bond distances

in ethane at both levels of calculation, as well as the optimized

∂EES(I)
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IMOHC bond distance. The same information appears in Table
2 for the ethyl radical.
While the HF/3-21G calculation predicts a bond length too

short by 0.0147 and 0.0133 Å as compared to the MP2/6-31G
calculation, the IMOHC method predicts a geometry that
deviates from the MP2/6-31G calculation by only 0.0015-
0.0016 Å for the ethane molecule and 0.0013 Å for the ethyl
radical; i.e., it reduces the error by a factor of 10. The choice
betweenk1 or k2 has a negligible effect on the results. Notice
that if we take the higher-level calculation on the entire system
as our standard of accuracy and measure the errors in units of
10-4 Å, we have errors of 133-147 in the lower-level
calculations on the entire system and 29-37 in higher-level
calculations on the model system (capped subsystem), but only
13-16 in the integrated calculations. Thus, combining the HL-
CSS and LL-ES results by the strategy presented here gives
better results than using either component-type calculation
separately.
Once we had the geometry of both systems optimized, we

calculated the 27× 27 Hessian matrix and performed a normal-
mode analysis using the 24× 24 submatrix. The frequencies
and zero-point energy (ZPE) of ethane at the three levels of
calculation appear in Table 3, while Table 4 lists the results for
the ethyl radical. These tables show that the IMOHC methods

give dramatic improvement in the frequencies of the subsystem.
The frequencies of the primary subsystem have the accuracy
of the higher level, while the substituent that is treated only at
lower level retains the lower-level accuracy with no degradation
by the cap. As an example, we can examine the set of four
bending frequencies of ethane with values between 1678 and
1677 cm-1 at the HF/3-21G level and between 1580 and 1575
cm-1 at the MP2/6-31G level. The IMOHC method yields two
frequencies at 1677 cm-1 and two frequencies at 1569 cm-1,
values that are very close to the HF/3-21G and MP2/6-31G
frequencies, respectively. Similarly, the lowest frequency in
ethane, which is the frequency of the torsion that occurs only
in the full system, is almost unchanged from the lower-level
entire system result by the IMOHC calculation.
Finally, in Table 5 we list the results of the calculations of

bond energies with and without ZPE contribution. All calcula-
tions in this table are based on geometries and frequencies
calculated by the method described above. The agreement
between the MP2/6-31G calculation and the IMOHC calculation
is excellent whether using the same constantk for both ethane
and ethyl or using the constantsk andReqcalculated specifically
for each system (k1 for ethane andk2 for ethyl), although the
former choice seems to give ever so slightly better results.
One could probably use even more approximate or standard

values fork andReq, but we leave that for future work.

Conclusion

We have presented and tested an extension to the original
integrated dual-level methods that appears to be a promising

TABLE 1: C -H Bond Distance (in Å) in Ethane As
Predicted by Single-Level Methods and IMOHC
Calculations

level RC-H(H-CH3) RC-H (H-CH2CH3)

HF/3-21G 1.0830 1.0841
MP2/6-31G 1.0959 1.0988
MP2/6-31G:HF/3-21G (k1) 1.0973
MP2/6-31G:HF/3-21G (k2) 1.0972

TABLE 2: C -H Bond Distance (in Å) in Ethyl As
Predicted by Single-Level Methods and by the IMOHC
Method

level RC-H (H-CH2) RC-H (H-CHCH3)

HF/3-21G 1.0717 1.0734
MP2/6-31G 1.0830 1.0867
MP2/6-31G:HF/3-21G (k1) 1.0854
MP2/6-31G:HF/3-21G (k2) 1.0854

TABLE 3: Frequencies (in cm-1) and ZPE (in kcal/mol) for
Ethane As Predicted by Single-Level Methods and IMOHC
Calculations

HF/3-21G MP2/6-31G
MP2/6-31G:
HF/3-21G (k1)

MP2/6-31G:
HF/3-21G (k2)

ωm

3268 3155 3257 3257
3268 3155 3257 3257
3241 3132 3199 3199
3241 3132 3160 3160
3201 3064 3160 3160
3197 3063 3083 3083
1678 1580 1677 1677
1678 1580 1677 1677
1677 1575 1576 1576
1677 1575 1569 1569
1580 1496 1569 1569
1572 1493 1531 1534
1352 1290 1330 1330
1352 1290 1330 1330
1005 1022 1085 1091
921 863 893 893
921 863 893 893
313 327 314 313

ZPE
50.24 48.11 49.40 49.42

TABLE 4: Frequencies (in cm-1) and ZPE (in kcal/mol) for
Ethyl As Predicted by Single-Level Methods and IMOHC
Calculations

HF/3-21G MP2/6-31G
MP2/6-31G:
HF/3-21G (k1)

MP2/6-31G:
HF/3-21G (k2)

ωm

3396 3310 3329 3330
3292 3200 3252 3251
3252 3142 3221 3221
3220 3100 3220 3220
3153 3023 3153 3153
1665 1570 1664 1664
1660 1558 1660 1660
1597 1546 1576 1577
1574 1493 1567 1569
1319 1263 1310 1310
1110 1073 1136 1141
1046 1050 1104 1105
894 855 878 878
439 479 487 487
129 147 129 129

ZPE
39.67 38.34 39.58 39.59

TABLE 5: Dissociation Energy (kcal/mol) of a C-H Bond

molecule level ∆Ea ∆H0
0

CH4 MP2/6-31G 99.66 89.90
C2H6 HF/3-21G 84.15 73.58
C2H6 MP2/6-31G 97.02 87.25
C2H6 MP2/6-31G:HF/3-21G (k1)b 97.09 87.27
C2H6 MP2/6-31G:HF/3-21G (k2)b 97.08 87.25
C2H6 MP2/6-31G:HF/3-21G (k1, k2)c 97.22 87.41

a ∆E is the Born-Oppenheimer classical energy of dissociation; i.e.,
it excludes zero-point energy;∆H0

0 is the standard-state enthalpy of
dissociation at 0 K, including zero-point energy.bCalculated usingk1
or k2 for both ethane and ethyl.cCalculated usingk1 for the ethane
molecule andk2 for the ethyl radical.
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tool for calculations of gradients, Hessians, and optimized
geometries of large molecules. The extension is simple and
does not introduce any significant extra computational cost into
the original IMOMM, IMOMO, and CCSS methods. It is based
on a harmonic restoring potential for the capping atom in the
capped subsystem. The computational cost for an integrated
geometry optimization of the entire system is essentially the
same as for a higher-level geometry optimization on the capped
subsystem and a lower-level geometry optimization on the entire
system, plus three single-point energy calculations for the capped
subsystem at the higher level. Furthermore, since it seems
unnecessary to calculate a set ofk andReq constants for each
case, these latter three calculations need not be repeated for all
cases, and they represent a negligible increase in the cost of
the calculation.
When applied to the calculation of geometries, frequencies,

and energies of the ethane molecule and ethyl radical, the
method gives rise to improved geometries and frequencies for
the critical part of the molecules under study, as well as C-H
bond energies very similar those obtained by a higher-level
calculation in the whole system, but with a much lower cost.
The computational advantages of this method are expected to
be more noticeable as the size of the system increases, allowing
accurate dual-level calculations in systems for which similarly
accurate single-level calculations are not affordable at present
or in the near future.
A special advantage of eqs 5 and 6 is that they allow for a

very modular approach in which totally separate calls to HL
and LL subprograms (or electronic structure15 or molecular
mechanics16,17packages) may be made and the results combined
ex post facto by eqs 5 and 6 at each step of the geometry
optimization. The gradients of eq 6 can also be formed at every
step of a dynamics calculation and used (since the force is minus
the gradient) for dual-level direct dynamics calculation by the
Car-Parrinello method18 or for direct dynamics calculations
including quantum effects by semiclassical methods.19,20 Dual-
level direct dynamics calculations in which the bond-breaking
and bond-making subsystems are treated at a higher level than
the rest of the system will allow for much greater accuracy than
if the entire system must be treated at the higher level.
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